

Malt Specifications for the Practical Brewer

Ashton Lewis BSG Manager of Training and Technical Support <u>alewis@bsgcraft.com</u> (417) 830-2337

Ashton Lewis

BSG Manager of Training & Technical Support BYO Technical Editor/Mr. Wizard

- SSG/Rahr Malting 2016 Present
- SBC Master Brewer 1997 2019
- Paul Mueller Company 1997-2016
- ✓ Joined BYO Team in 1995
- Started homebrewing in 1986
- MS in Food/Brewing Science UC Davis in 1994
- S in Food Science Virginia Tech in 1991

What are Specifications?

A detailed description used to minimize
 miscommunication

- Section 2 Construction 2 Construc
 - Product specifications, e.g., malt specifications
 - Engineering/design specifications
 - Functional specifications

How Are Specifications Used by Buyers?

- Communicate requirements & expectations to supplier
 - Bid packages
 - * Purchase orders
 - * Acceptance criteria

Features

- 14.9 psig Non-ASME Code
- 100°F Design Temperature
- 70° Bottom Cone Angle
- 2 Cooling Zones on Shell
- 1 Cooling Zone on Cone
- 1 Thermowell
- 3" of Insulation
- Fully Welded 12 Gauge Stainless Steel Outer Jacket
- Inswing Manway
- Removable CIP Assembly
- Racking Arm

Finish Options:

- #4 Polished Interior Finish
- #4 Polished Exterior Finish

Tank Trim:

- 2-Hole RLV Assembly
- Combination Pressure / Vacuum Relief
- Rotary Spray Ball Upgrade
- Butterfly & Sample Valves
- Pressure Gauge
- Stainless Steel Fermentation Airlock

Leg Options:

- Adjustable Base Plates
- Base Plate Tank Jack

How Are Specifications Used by Suppliers?

- Define products
 - * Manufacturing control
 - Marketing & sales
 - * Acceptance criteria
- Explain how to use a product
 - New beer formulation
 - Ingredient substitutions
 - Process specifics, e.g., mashing

The following values are subject to harvest-specific variations. All analyses are performed by independent, certified laboratories according to MEBAK "Brew-Technical Analysis Methods". The color of the Caramel- and Roasted Malts is measured by the Hellige Neo-Komparator as the reference method.

Parameter:	Minimum:	Maximum:	Unit:		
Moisture content		5	%		
Extract (dry substance)	78		%		
Color (EBC)	7	9	EBC		
Color (Lovibond)	3.1	3.8	Lovibond		
Protein (dry substance)	11	13	%		
Kolbach Index	31	43	%		
Hartong Index 45°C	33	43	%		
Saccharification time		15	min		
Viscosity (8.6%)		1.58	m Pa s		
Friability	75		%		

Page 1 of 2 Valid after: 2021-10-27

www.weyermannmalt.com

Same Specification, Different Products

Malt Specs versus COA

Shakopee Shipment Specifications

 A specification applies to a type of malt, e.g., Rahr North Star Pils

Crop Year 2021

		2R Malted Barley	Premium Pilsner	North Star Pils	Pale Ale
Moisture (FOB basis)	%	4.5 max	4.5 max	5.0 max	4.5 max
Extract (FGDB)	%	79.0 min	79.0 min	78.0 min	79.0 min
Color	SRM	1.90-2.50	1.80-2.30	1.50-2.00	2.70-4.80
Protein	%	13.0 max	13.0 max	12.5 max	13.5 max
Kolbach Index	%	39.0-47.0	39.0-47.0	37.0-44.0	
Plump (7/64"+6/64")	% 85.0 min		85.0 min	85.0 min	85.0 min
Thru 5/64"	%	2.0 max	2.0 max	2.0 max	2.0 max
FAN	ASBC	160-235	160-235	150-215	175 min
Diastatic Power	ASBC	120-160	120-160	120-180	95 min
Alpha Amylase	ASBC	55.0-75.0	55.0-75.0	55.0-70.0	58 min
Beta Glucan	ppm	140 max	140 max	150 max	150 max

Issued: 22 Oct, 2021

Malt Specs versus COA

RAHR MALTING CO. SHAKOPEE, MN 55379

952-496-7117 (Theresa Kukar) - Please contact QCshakopee@rahr.com for support

Certificate Of Analysis

Customer	Ship Date	Car Number	Grade	Grade		
BREWERS SUPPLY GROUP	10/20/2021	WAT 271	North Sta	r Pils	WREN HOUSE BREWING	
Shipment Wt. Lbs.					Rahr Ref No	
47,954					0039696	
	Crop Yea	r	Variety I	Percent		
		AMBA A	pproved Barley	100		
Assay	Metho	odology	Shipmen	t Min Spec	Max Spec	
Moïsture, %	ASBC	-Malt-3	4.49		5.00	
Fine Grind, As Is, %			77.6			
Fine Grind, Dry Basis,	% ASBC-	-Malt-4	81.2	79.0	99.0	
Fine/Coarse Difference	e,% ASBC-	-Malt-4	1.0		2.0	
Coarse Grind, As Is, 9	6		76.6			
Coarse Grind, Dry Bas	is, % ASBC-	-Malt-4	80.2	77.5	99.9	
Color, SRM	ASBC	-Wort-9	1.55	1.50	1.90	
Diastatic Power, ^o Lint	ner ASBC-	-Malt-6C	120	110	150	
Alpha Amylase, DU	ASBC	-Malt-7D	58.1	55.0	70.0	
Total Protein, %	ASBC	-Malt-8B	11.21			
Soluble Protein, %	ASBC	-Wort-17	4.54	4.00	5.40	
S/T Ratio			40.5	38.00	43.00	
Viscosity, cP	ASBC	-Wort-13B	1.50		1.55	
Beta Glucan, mg/L	ASBC	-Wort-18B	115		150	
DON, mg/L			0.08		0.50	
FAN, mg/L	ASBC	-Wort-12B	185	150	200	
pH	ASBC	-Wort-8	5.89			
7/64	ASBC	-Malt-2B	75.0			
6/64	ASBC	-Malt-2B	19.0			
5/64	ASBC	-Malt-2B	5.4			
Thru	ASBC	-Malt-2B	0.6		1.0	
Turbidity, NTU			7.9			
Friability	ASBC	-Malt-12	87.8			
Friability %WK	ASBC	-Malt-12	0.14			
Bushel Weight, Ih/hu	ASBC	Malt-24	40.8			

- A specification applies to a type of malt, e.g., Rahr North Star Pils
- A COA (Certificate of Analysis) applies to a particular lot of malt

therookun

Theresa Kukar

RAHR MALTING CO. SHAKOPEE, MN 55379

952-496-7117 (Theresa Kukar) - Please contact QCshakopee@rahr.com for support

Certificate Of Analysis

Customer Ship Dat		Car Number	Grade		Destination
BREWERS SUPPLY GROUP	10/20/2021	WAT 271	North Sta	r Pils	WREN HOUSE
					BREWING
Shipment Wt. Lbs.					Rahr Ref No
47,954					0039696
	Crop Yea	r "	Variety I	Percent	
		AMBA A	pproved Barley	100	
Assay	Metho	odology	Shipmen	t Min Spec	Max Spec
Moisture, %	ASBC	-Malt-3	4.49		5.00
Fine Grind, As Is, %			77.6		
Fine Grind, Dry Basis	% ASBC	-Malt-4	81.2	79.0	99.0
Fine/Coarse Difference	e, % ASBC	-Malt-4	1.0		2.0
Coarse Grind, As Is, 9	%		76.6		
Coarse Grind, Dry Ba	sis, % ASBC	-Malt-4	80.2	77.5	99.9
Color, SRM	ASBC	-Wort-9	1.55	1.50	1.90
Diastatic Power, ºLint	ner ASBC	-Malt-6C	120	110	150
Alpha Amylase, DU	ASBC	-Malt-7D	58.1	55.0	70.0
Total Protein, %	ASBC	-Malt-8B	11.21		
Soluble Protein, %	ASBC	-Wort-17	4.54	4.00	5.40
S/T Ratio			40.5	38.00	43.00
Viscosity, cP	ASBC	-Wort-13B	1.50		1.55
Beta Glucan, mg/L	ASBC	-Wort-18B	115		150
DON, mg/L			0.08		0.50
FAN, mg/L	ASBC	-Wort-12B	185	150	200
pH	ASBC	-Wort-8	5.89		
7/64	ASBC	-Malt-2B	75.0		
6/64	ASBC	-Malt-2B	19.0		
5/64	ASBC	-Malt-2B	5.4		
Thru	ASBC	-Malt-2B	0.6		1.0
Turbidity, NTU			7.9		
Friability	ASBC	-Malt-12	87.8		
Friability %WK	ASBC	-Malt-12	0.14		
Bushel Weight, lb/bu	ASBC	-Malt-2A	40.8		

47,954				
<u>C</u>	rop Year AME	Variety 3A Approved Barley	100	
Assay	Methodology	Shipme	nt Min Spec M	
Moisture, %	ASBC-Malt-3	4.49		
Fine Grind, As Is, %		77.6		
Fine Grind, Dry Basis, %	ASBC-Malt-4	81.2	79.0	
Fine/Coarse Difference, %	ASBC-Malt-4	1.0		
Coarse Grind, As Is, %		76.6		
Coarse Grind, Dry Basis, %	ASBC-Malt-4	80.2	77.5	
Color, SRM	ASBC-Wort-9	1.55	1.50	
Diastatic Power, ^o Lintner	ASBC-Malt-6C	120	110	
Alpha Amylase, DU	ASBC-Malt-7D	58.1	55.0	
Total Protein, %	ASBC-Malt-8B	11.21		
Soluble Protein, %	ASBC-Wort-17	4.54	4.00	
S/T Ratio		40.5	38.00	
Viscosity, cP	ASBC-Wort-13B	1.50		
Beta Glucan, mg/L	ASBC-Wort-18B	115		
DON, mg/L		0.08		
FAN, mg/L	ASBC-Wort-12B	185	150	
 pH	ASBC-Wort-8	5.89		
7/64	ASBC-Malt-2B	75.0		
6/64	ASBC-Malt-2B	19.0		
 5/64	ASBC-Malt-2B	5.4		
Thru	ASBC-Malt-2B	0.6		
Turbidity, NTU		7.9		
Frishility	ASPC_Molt_12	87.8		

Shakopee Shipment Specifications

Crop Year 2021

		2R Malted Barley	Premium Pilsner	North Star Pils	Pale Ale
Moisture (FOB basis)	%	4.5 max	4.5 max	5.0 max	4.5 max
Extract (FGDB)	%	79.0 min	79.0 min	78.0 min	79.0 min
Color	SRM	1.90-2.50	1.80-2.30	1.50-2.00	2.70-4.80
Protein	%	13.0 max	13.0 max	12.5 max	13.5 max
Kolbach Index	%	39.0-47.0	39.0-47.0	37.0-44.0	
Plump (7/64"+6/64")	%	85.0 min	85.0 min	85.0 min	85.0 min
Thru 5/64"	%	2.0 max	2.0 max	2.0 max	2.0 max
FAN	ASBC	160-235	160-235	150-215	175 min
Diastatic Power	ASBC	120-160	120-160	120-180	95 min
Alpha Amylase	ASBC	55.0-75.0	55.0-75.0	55.0-70.0	58 min
Beta Glucan	ppm	140 max	140 max	150 max	150 max

Specs v. COA

Many brewers refer

to a complete set of

malt analyses as

"malt specs." This

can lead to confusion

about what is being

discussed.

Issued: 22 Oct, 2021

Overview of Specs – Physical and Biochemical Analytics

- Assortment
- Bushel Weight
- Friability
- Moisture Content
- ✓ Diastatic Power (DP)
- Alpha Amylase (DU)
- Deoxynivalenol (DON)

Overview of Specs - Compositional Analytics

- ✓ Extract Fine Grind
- ✓ Extract Coarse Grind
- Fine/Coarse Difference
- Color
- Total Protein
- Soluble/Total (Kolbach Index)
- Free Amino Nitrogen (FAN)
- Beta Glucan
- ✓ Viscosity

Analytics Most Useful to the Small-Scale Practical Brewer

Don't Assume that Malt is Constant

Coarse Grind Extract, As-Is

Method

- 50 g coarsely milled malt
- 200 ml distilled water
- ◆ 45°C for 30 minutes, 25 minute ramp to 70°C, 100 ml 70°C water added, 60 minute hold, cool to ambient, and adjust total sample weight to 450 g
- Total mash time = 115 minutes
- Total water is 400 grams (8:1 water to grist ratio)
- Transfer to filter, collect wort, and measure density

Coarse Grind Extract, As-Is

Significance

- Represents yield more typical for brewery conditions
- Basis for brewhouse yield determination
- Decreases with protein content
- Used in conjunction with fine grind
 extract as indicator of modification

range is 75-81.5%

Brewhouse Yield Calculation

рΗ

<u>Method</u>

 Congress wort sample measured for pH. Note that Congress mash is made using distilled water and is very dilute.

Significance

- General indicator of mash
 pH
- Decreases with malt color
- Low wort pH can come from burning sulfur on the kiln

What's the Scoop?	This is a Summary of Your Water "Recipe"			Adjusted Profile		Suggested Acid Additives (Choose One)		
pop the data below about what you want	City Water	3492 liters	3.0 BBL	Ca ⁺²	100 ppm	% Acidulat	ed Malt	0.72%
th water and the grist bill for this beer, the	RO Water	824.1 liters	7.0 BBL	Na⁺	30 ppm	88% Lacti	ic Acid	0.5 g/kg grist
also includes a diluent suggestion if the	CaSO ₄	242 g	8.54 oz.	Mg ⁺²	15 ppm	75% Phosph	oric Acid	0.5 g/kg grist
water.	CaCl ₂	158 g	5.56 oz.	SO4	157 ppm	~Mash pH Based on Water and Acid Correction		cid Corrections
ested acidulated malt, lactic acid, and	NaCl	31 g	1.09 oz.	Cl	63 ppm	(these values should all be the same)		
help achieve the your mash goals. The	MgSO ₄	73 g	2.58 oz.	HCO3 ⁻	50 ppm	~ Mash pH with Acidulated Malt		5.60
ash pH is a prediction based on grist sition, water chemistry profile, and one of the acid additions (all equivalent).	NaHCO ₃	0 g	0.00 oz.	Cl ⁻ : SO4-	0.4 : 1	~ Mash pH with	~ Mash pH with Lactic Acid	
	Total Water	1,173 liters	10.0 BBL	RA	-22°dH	~ Mash pH with Phosphoric Acid		5.60
						. –		
e you doing in the mash?						Acid Addi	ton Rules	

What are you doing in the mash?									
Malt Type	Base Malt pH (see COA)	Crystal Malts	Light Roasted Malts	Dark Roasted Malts	Acidulated Malt	Target Mash pH			
Usage Rate (% of total extract)	5.8	2.5%	0.0%	0.0%	0.0%	5.6			

Mash pH ~ Base Malt pH +(°RA x 10/0.3) - (% crystal x 0.025) - (% light roast x 0.030) - (% dark roast x 0.050) - (% acidulated x 0.1)

How much brewing water do you need (mash + sparge)?

Total Volume	10.0	BBL	11.7 hL	
--------------	------	-----	---------	--

What's in your water ("as-is profile")?

Based u to do wi salt addit

volume

plan is to

Sugg

phospho right to ~M

compos

lon	Ca ⁺²	Na⁺	Mg ⁺²	SO4	Cl	HCO3 ⁻	Cl ⁻ : SO4-	RA	~ Mash pH
ppm 📗	12	66	30	60	15	168	0.3	63°dH	5.93

1,173 liters

88% Lactic Acid

@ 65.9g/100kg grist Reduces Mash pH by ~0.1

75% Phosphoric Acid

@ 74.8g/100kg grist Reduces Mash pH by ~0.1

Source:

Siebel Institute Lectures

Brewing Science Trivia!

- Søren Sørensen developed the concept of pH and the pH scale in 1909.
- Sørensen was the head of the Carlsberg
 Brewing Laboratories from 1901 to 1938.

Color (SRM)

Method

- Use wort produced from fine grind, Congress mash
- Measure absorbance of clear wort* at 430 nm in 10 mm cuvette, diluting if required for dark worts

```
SRM Color = A_{(10@430nm)} \times 10 = ^{O}Lovibond
EBC Color = SRM × 1.97
```

*Wort is deemed to be clear when $A_{(10@430nm)} \times 0.039 < A_{(10@700nm)}$

Color (SRM)

<u>Key Points</u>

- Congress wort gravity is ~8° Plato, so value needs to be adjusted for brewery wort gravity when used in calculations
- Wort color increases during boiling and usually decreases during fermentation
- Malt color is related to malt flavor
- Changes in beer color can signal a change in beer flavor, even when there is no flavor difference

Total Protein

<u>Method</u>

- Determine nitrogen content (wt/wt) in malt using either the Kjeldahl method or combustion method
- * % Protein = 6.25 x %N

Significance

- Enzymes are proteins
- Extract decreases as protein increases
- Foam and haze are related to malt protein

Johan Kjeldahl

S/T or Kolbach Index

<u>Method</u>

 Ratio of soluble protein to total protein

Significance

- Index of modification
- High values are associated with decreased foam stability
- High values are associated with
 ease of use in brewhouse

Normal base malt

range is 35-48%

Free Amino Nitrogen (FAN)

Method

- Amino acids, ammonia, and alpha-amino nitrogen (protein and polypeptide ends) stain blue-purple with ninhydrin
- ✤ Color measured at 570 nm

Significance

- Primarily used as an indicator of amino acids available to yeast
- Related to beer stability

Diastatic Power (DP)

Method

 Standard starch is added to ambient water extract of malt sample, and reducing sugars quantified by reacting with ferricyanide solution and subsequent titration with thiosulfate

Significance

- Measures total amylolytic enzyme activity of malt
- Process control in relation to RDF and adjunct ratios
- ºWK = (3.5 x ºLintner) 16
- 100° Lintner = 334° WK (Windisch-Kolbach)

Dextrinizing Units (DU)

<u>Method</u>

 Special beta-limit starch is added to ambient water extract of malt sample, and time required to dextrinize starch is determined in the presence of excess beta-amylase using potassium iodide as color indicator

Significance

- Measures alpha amylase activity of malt
- Process control in relation to RDF and adjunct ratios

Should be ~30+ for base malt

Assortment

<u>Method</u>

100 gram malt sample separated on
 7/₆₄", 6/₆₄", 5/₆₄" screens into these
 three fractions and a "thru" fraction

Significance

- Important consideration for mill adjustment; changes in assortment should flag gap tests
- Kernel plumpness is related to husk fraction

Friability

Method

 Malt sample is crushed using special friability instrument and further separated on secondary screen.

✤ <u>Significance</u>

- Useful in conjunction with other indices
- Flag by breweries to change mashing and lautering profiles

Normally >90%

The Rest of the COA

Meaningful and useful data, but not the numbers that most brewers used to set their brewing clocks.

Moisture Content

Method

 Determined by weighing before and after drying finely milled sample in a drying oven.

Significance

- $_{\ast}$ Malt stability issues when greater than ~6%
- Very dry malt is more susceptible to damage
- Generally less in highly kilned malts
- Brewers don't like paying for water

Normal base malt range is 3–5%

Fine Grind Extract, As-Is

Method

- 50 g finely milled malt
- 200 ml distilled water
- ◆ 45°C for 30 minutes, 25 minute ramp to 70°C, 100 ml 70°C water added, 60 minute hold, cool to ambient, and adjust total sample weight to 450 g
- Total mash time = 115 minutes
- Total water is 400 grams (8:1 water to grist ratio)
- Transfer to filter, collect wort, and measure density

Fine Grind Extract, As-Is

Significance

- Determine highest possible yield
- Decreases with protein content
- Used in conjunction with coarse grind extract as indicator of modification
- Wort from this method is used for all wort analyses that are used to describe malt (color, pH, FAN, etc.)

Normal base malt range is 76-82%

Dry-Basis Extract

Method

- 1. Determine malt moisture and as-is extract
- 2. Calculate dry-basis extract
 - > Dry Basis Extract = (100 x As-Is Extract) ÷ (100 % Moisture)

Example

- Assume Coarse Grind, As-Is = 78% @ 4.2% moisture
- Coarse Grind, Dry Basis = (78 x 100) ÷ (100-4.2) = 81.4%

Fine/Coarse Difference

Method

* $FG_{(db)} - CG_{(db)} = C/F$ Difference

Significance

- General index of modification related to cell wall degradation during malting
- Not very meaningful with well-modified malts because the value is often less than the extract measurement error

Normal base malt range is 0.5–1.5

Cell Wall Degradation During Malting

Soluble Protein

<u>Method</u>

- Rapid method using Congress wort that measures UV light absorbance by proteins at 215 nm and 225 nm
- Standardized using the Kjeldahl method

<u>Significance</u>

- Indication of proteolysis during malting and mashing
- Index of modification, but without referring to total protein, soluble protein does not tell the whole story
- Very useful control parameter for the maltster

Turbidity

Method

 Congress wort sample measured for haze using nephelometer

Significance

- Typically associated with proteins and beta glucans not degraded after mashing
- May indicate residual starch after mashing
- Red flag for downstream clarity issues in finished beer

Beta Glucan

Method

 Calcofluor, a fluorescent dye that binds to carbohydrate gums, is added to wort from Congress mash, 365 nm light is used for excitation, and 420 nm is used to measure emitted light

<u>Significance</u>

- Index of modification related to cell wall degradation
- Method measures high molecular weight beta glucan (>~100kD), but signal is not affected by molecular weight

Viscosity

Method

 Congress wort viscosity is measured using an Ostwald or Cannon-Fenske tube viscometer

Significance

- Index of modification related to cell wall degradation
- Indicator of wort flow properties through mash bed

Normal base malt range is < 1.8 cP

Deoxynivalenol (DON)

Method

 Enzyme-linked immunosorbent assay (ELISA) using monoclonal antibodies specific to DON

Significance

- DON is a mycotoxin with FDA-regulated limits
 established for wheat and barley
- Commercial malts well below the FDA limit

Bushel Weight

Method

- 110 gram malt sample poured using special funnel apparatus into volumetric container. Assume 214 ml for example.
- BW = 8,545/volume of sample = 8,545/214 = 40 lb/bu
- $lb/ft^3 = 40 \ lb/bu \div 9.25 \ gal/bu \times 7.48 \ gal/ft^3 = 32.3 \ lb/ft^3$
- kg/hl \cong BW x 1.2872 = 40 x 1.2872 = 51.5 kg/hl = 515 kg/m³

Significance

Silo and conveyor sizing

What Specs Don't Talk About

- > Beer Flavor
- Malt condition into mill
- Grist assortment after milling
- > Brewery extract
- > Water chemistry
- > Brewery mash conditions

BSG Tech Tips

Malt Sensory & Physical Analysis by Hand

Malt Chewing & Observation

- Quick and easy method
- Requires training and imagination to relate malt flavor to beer flavor
- Great for weeding out samples when developing new beers
- Limited use for calculations

- Simplified mini-mash requiring no special equipment
- Quick way to produce wort for sensory evaluation
- Great way to compare several malts of a single type, e.g., Pilsner base malts

Pilot Brewing

- Malt evaluation is really all about beer.
- The best way to know for certain how malt works for brewing is to brew!
- Lots of opinions about the scalability of pilot brews, but breweries of all sizes do use pilot brewing and it is a valuable tool.

The Importance of Being Choosey

- Main source of fermentable extract
- Provides enzymes needed to convert starch to sugars
- Husk of barley malt is used as a filter during wort collection
- Flavor, color, appearance, and mouthfeel are all affected by malt

Thank You!

Ashton Lewis BSG CraftBrewing <u>alewis@bsgcraft.com</u> (417) 830-2337

