USING A MALT COA TO BREW BETTER BEER

Ashton Lewis Technical Editor and Mr. Wizard Columnist, BYO Magazine Manager of Training & Technical Support, BSG National Technical Committee, MBAA

Malt Quality and the Certificate of Analysis (COA)

Prepared by Juan Medina & Ashton Lewis Presented by Ashton Lewis

Malt Specifications vs. COA

Review Malt Quality Factors

Investigate Components of COA

Apply Key Points of the COA

Recap

What are Specifications?

- A detailed description used to minimize miscommunication
- Examples include:
 - Product specifications, e.g., malt specifications
 - Engineering/design specifications
 - Functional specifications
 - Project specification

Same Specification, Different Products

Malt Specification vs. Certificate of Analysis

- A specification applies to a type of malt, for example Rahr Pale Ale malt.
- A Certificate of Analysis applies to a particular lot of malt.
- Many brewers refer to a complete set of malt analyses as "malt specs." This can lead to confusion about what is being discussed.

QualityEssentia	ls.	Horizons International 101 First Avenue Ourtown, CA 91919		
	CERTIF	ICATE OF ANALYSIS	5	
	Date Printed:	07-Mar-2018		
	Customer:	All AA Casting		
	Shipping Address:	140 Ave E, Upt	own CA 12345	
	Product:	Plastic Flake fo	r AB Product Group	
	Customer P.O.:	PO12345AB		
	BOL #:	BOL6789		
	Package Size:	Rail Car		
	Microbiological:	Commercially S	Stable	
Serial/Lot Number(s)	Expire D	ate	Mfg Date	
ABKK03	15-Feb-2	2022	12-Feb-2018	
Test Completed	Unit of Measure	Result	Specification	
Color	Scale	55.31211	From 54.80000 to 57.60000	
V	DL/g	0.922	From 0.0894 to 0.994	
Melt Point	Degree F	376	Not less than 372	
	Percent	7.9214	Between 7.8880 and 8.0224	
Moisture %				

Director of Quality Managemen Vanco Mensar

Customer	Ship Date	Car Number	Grade	Destination
BREWERS SUPPLY GROUP	4/28/2023		North Star Pils	BSG SHAKOPEE
				WAREHOUSE

Shipment Wt. Lbs. 159,368

Crop Year

Rahr Ref No 0084591BSG

Issued: 01 Jun, 2023

VarietyPercentApproved Malting Varieties100

Assay	Methodology	Shipment	Min Spec	Max Spec
Moisture, %	ASBC-Malt-3	4.12		5.00
Fine Grind, As Is, %		78.3		
Fine Grind, Dry Basis, %, %	ASBC-Malt-4	81.7	79.0	
Fine/Course Difference, %	ASBC-Malt-4	0.3		2.0
Course Grind, As Is, %		78.0		
Course Grind, Dry Basis, %	ASBC-Malt-4	81.4		
Color, SRM	ASBC-Wort-9	1.80	1.50	2.00
Diastatic Power, ^o Lintner	ASBC-Malt-6C	131	110	180
Alpha Amylase, DU, DU	ASBC-Malt-7D	61.4	50.0	70.0
Total Protein (Leco), %	ASBC-Malt-8B	11.33		12.5
Soluble Protein, %	ASBC-Wort-17	4.78		
S/T Ratio		42.2	37.00	44.00
Viscosity, cP	ASBC-Wort-13B	1.49		1.55
Beta Glucan, mg/L	ASBC-Wort-18B	127		150
Don, mg/L		0.10		0.50
FAN, mg/L	ASBC-Wort-12B	177	150	215
рН	ASBC-Wort-8	5.99		
7/64	ASBC-Malt-2B	71.5		
6/64	ASBC-Malt-2B	20.8		
5/64	ASBC-Malt-2B	6.5		
Thru	ASBC-Malt-2B	1.2		2.0
Turbidity, NTU		10.3		
Friability	ASBC-Malt-12	89.3		
Friability %WK	ASBC-Malt-12	0.36		
bushel Weight, lb/bu	ASBC-Malt-2A	41.2		

Therookun

Theresa Kukar

Defining the COA

What is a Certificate of Malt Analysis (COA)?

- Report card of malt quality analytical data (malting and blending outcome) as measured by laboratory analysis.
- Description of specific malt lot.
- Allows brewers to track changes and modify brewing process.

Customer	Ship Date	Car Number	Grad	le	Destination
BREWERS SUPPLY GROUP	4/28/2023		North St	ar Pils	BSG SHAKOPEE WAREHOUSE
Shipment Wt. Lbs.					Rahr Ref No
159,368					0084591BSG
	Crop Year	•	Variety	Percent	
		Approved	Malting Varieties	100	
Assay	Metho	dology	Shipmer	nt Min Spec	Max Spec
Moisture, %	ASBC-I	Malt-3	4.12		5.00
Fine Grind, As Is, %			78.3		
Fine Grind, Dry Basis,	%, % ASBC-I	Malt-4	81.7	79.0	
Fine/Course Differenc	e, % ASBC-I	Malt-4	0.3		2.0
Course Grind, As Is, 9	/o		78.0		
Course Grind, Dry Bas	sis, % ASBC-I	Malt-4	81.4		
Color, SRM	ASBC-	Wort-9	1.80	1.50	2.00
Diastatic Power, ^o Lint	ner ASBC-I	Malt-6C	131	110	180
Alpha Amylase, DU, D	OU ASBC-I	Malt-7D	61.4	50.0	70.0
Total Protein (Leco), 9	% ASBC-I	Malt-8B	11.33		12.5
Soluble Protein, %	ASBC-	Wort-17	4.78		
S/T Ratio			42.2	37.00	44.00
Viscosity, cP	ASBC-	Wort-13B	1.49		1.55
Beta Glucan, mg/L	ASBC-	Wort-18B	127		150
Don, mg/L			0.10		0.50
FAN, mg/L	ASBC-	Wort-12B	177	150	215
рН	ASBC-	Wort-8	5.99		
7/64	ASBC-I	Malt-2B	71.5		
6/64	ASBC-I	Malt-2B	20.8		
5/64	ASBC-I	Malt-2B	6.5		
Thru	ASBC-I	Malt-2B	1.2		2.0
Turbidity, NTU			10.3		
Friability	ASBC-I	Malt-12	89.3		
Friability %WK	ASBC-I	Malt-12	0.36		
bushel Weight, lb/bu	ASBC-I	Malt-2A	41.2		

Issued: 01 Jun. 2023

METHODS

ALEWIS@BSGCRAFTBREWING.COM ASBC METHODS OF ANALYSIS THE SCIENCE OF BEER ABOUT TOOLS TRAINING VIDEOS FAQ American Society of Brewing Chemists > METHODS Share | 🔽 f 🔰 in COMMUNITY METHODS ASBC Methods of Analysis Methods Welcome to the Methods site. When browsing the methods look for ones with a "Master the Method" About button to access additional information about that method including: Safety, Scientific Background, Tips Tools and Tricks, and Resources. Training Videos ASBC Methods of Analysis was created to improve and bring uniformity to the brewing industry on a technical level. ASBC is dedicated to ensuring the highest quality, consistency, and safety of malt-based beverages and FAQ their ingredients. ASBC Methods of Analysis is designed to help users understand and perform analytical Subscribe methods better and more quickly. IN THE LAB PUBLICATIONS Not an ASBC member? You're missing out! Members get free access to Methods and much more. See all of EVENTS our member benefits and join today! STORE **Barley Methods** Malt Methods Adjunct **Brewers' Grains** . Materials Methods Methods Hops Methods Wort Methods Flavored Alcoho **Beer Methods** Beverages Filter Aids Microbiology Methods Methods **By-Products** Packaging Methods Methods Sensory Analysis Analysis Methods

Join

O

SUBSCRIBE

- COA data result from different standardized malt analyses.
- The American Society of Brewing Chemists (ASBC) sets standards primarily used in the US and Canada.
- ASBC member laboratories • regularly validate test results.
- **European Brewing** ٠ Convention (EBC) and Brewery Convention of Japan (BCOJ) provide comparable standards in other countries

Malt Analysis Map

Congress Mash Method

- Mix 200 ml water at 47°C with 50 g milled malt (fine and coarse).
- Immediately place mash sample in mash bath and turn on mash stirrer.
- Hold at 45°C for 30 minutes.
- Heat mash to 70°C at a rate of 1°C/min (25-minute ramp).
- Add 100 ml of 70°C water and hold for 60 minutes.
- Cool to 20°C by adding cold water, then adjust net weight to 450 g.
- Note that total mash time = 115 minutes.
- Transfer to filter, collect wort, and measure density.

Note: The congress mash is based on step-mashing methods.

Reviewing Malt Quality Factors

Fundamental Malt Quality Factors

Initial Barley Qualities Modification Kilning Handling and Storage

Variety, Environment, Handling and Storage

- Composition sets the stage before malting begins
- Total protein
- Assortment
- Bushel weight
- Purity (chaff, straw, foreign seeds)
- Germinative Energy (non-dormant)
- Capacity (viability)
- Damage (pre-harvest sprout, heat damage, breakage)
- DON

Key Malt Quality Concept: Modification

- Describes the degree of biochemical transformation during the malting process, especially germination
- Influences several COA metrics
- Three main drivers:
 - Cytolysis Degradation of cell walls made of structural non-starch polysaccharides (β-glucan and arabinoxylan)
 - Proteolysis Degradation of proteins into Soluble proteins, peptides, and amino acids
 - Enzyme Development Synthesized by the aleurone layer and scutellum and moved by diffusion into the endosperm during germination

Modification is a product of biological activity. It tends to correlate with growth of rootlets and acrospires. This picture shows **overgrown** kernels that are atypical of brewers malt.

Endosperm Modification During Malting

Barley

Malt

Kilning

- Temperature and airflows vary to aim for specification targets
 - Modification continuation during withering (free drying)
 - $\,\circ\,$ Modification lock-in by end of kilning
 - $\,\circ\,$ Color and flavor formation
 - $\,\circ\,$ Determination of final malt moisture
- Conversion of S-methylmethionine (DMS-P) into DMS
- Destruction of some sensitive enzymes, especially lipoxygenase, some proteases and beta-glucanase

Fundamentals: Barley Quality

Handling and Storage

- Includes:
 - $\,\circ\,$ Transfer into storage silos
 - \circ Movement during malting
 - $\,\circ\,$ Truck and railcar loading
 - \circ Transloading
 - $\circ~\text{Bagging}$
- Handling dry malt usually causes some damage; malt is easier to damage after initial damage
- Malt quality can also be affected by storage conditions (temperature, moisture, oxygen, pests) and duration

The Components of the COA

Dry, Physical Analysis

- Measurements about the physical properties of malt
- No chemical testing involved
- Among the oldest analytical techniques
- Some correlations to chemical properties of malt

Metrics

- Assortment (sizing)
- Friability
- Bushel Weight
- Purity
- Cleanout
- Skinned and Broken

Analyses not typically included in COA

			certificate	of Analysis				
Customer		Ship Date	Car Number		irade		Destination	
BREWERS SUPPLY	Y GROUP	4/28/2023		North	Star Pils		BSG SHAKOPEE	Ε
							WAREHOUSE	
Shipment Wt. Lb	s.						Rahr Ref N	No
159,368							0084591BS	G
	-	Crop Year		Variety	Percen	<u>t</u>		
			Approved	I Malting Varietie	s 100			
Assay		Method	ology	Ship	ment	Min Spec	Max Spec	
Moisture, %	5	ASBC-M	1alt-3	4.	12		5.00	
Fine Grind,	As Is, %			78	.3			
Fine Grind,	Dry Basis, %	6, % ASBC-M	1alt-4	81	7	79.0		
Fine/Course	Difference,	% ASBC-M	1alt-4	0	.3		2.0	
Course Grin	id, As Is, %			78	.0			
Course Grin	id, Dry Basis	,% ASBC-M	1alt-4	81	.4			
Color, SRM		ASBC-V	Vort-9	1.	80	1.50	2.00	
Diastatic Po	wer, ^o Lintne	er ASBC-M	1alt-6C	13	31	110	180	
Alpha Amyl	ase, DU, DU	ASBC-M	1alt-7D	61	4	50.0	70.0	
Total Protei	n (Leco), %	ASBC-M	1alt-8B	11	.33		12.5	
Soluble Pro	tein, %	ASBC-V	Vort-17	4.	78			
S/T Ratio				42	.2	37.00	44.00	
Viscosity, cl	Р	ASBC-V	Vort-13B	1.	49		1.55	
Beta Glucar	n, mg/L	ASBC-V	Vort-18B	12	27		150	
Don, mg/L				0.	10		0.50	
FAN, mg/L		ASBC-V	Vort-12B	17	77	150	215	
pН		ASBC-V	Vort-8	5.	99			
7/64		ASBC-M	1alt-2B	71	.5			
6/64		ASBC-M	1alt-2B	20	.8			
5/64		ASBC-M	1alt-2B	6	.5			
Thru		ASBC-M	1alt-2B	1	.2		2.0	
Turbidity, N	TU			10	.3			
Friability		ASBC-M	1alt-12	89	.3			
Friability %	WK	ASBC-M	1alt-12	0.	36			
bushel Weig	ght, lb/bu	ASBC-M	1alt-2A	41	.2			

Therono Kulan

Issued: 01 Jun. 2023

Assortment

- Kernel size distribution measured using separation screens and reported as %
 - \odot Screens are 7/64", 6/64", 5/64", with a bottom pan
- Kernel size affects malt milling; uniformity is preferred
- Influenced by barley assortment and malting process
- Correlations
 - Bushel weight (+)
 - \circ Extract (+)
 - Total protein (-)

Bushel Weight

- The weight of one bushel (9.31 gal) of grain
- Used to calculate malt volume of a defined volume
- Influenced by grain plumpness, grain type, and purity
 - Huskless grain (e.g., wheat, rye) has higher bushel weight
 - 2-row barley has higher bushel weight than 6-row
 - Straw, chaff or other impurities can decrease bushel weight
- Correlations
 - o Assortment (+)
 - \circ Extract (+)
 - \circ Protein (-)

Friability

- Friability describes how easily malt crumbles ۲
 - o % friability = percentage of sample crushed
 - %WK: percentage of whole kernels surviving crush test
- General indication of malt modification and homogeneity
- Mill changes may be required when friability is low ۲
- Under-modified endosperm difficult to crush because of cell walls
- %WK is indicator of dead or dormant kernels going into malting
- Correlations
 - (+) Soluble protein, FAN

(-) Beta-glucan, Viscosity

Photos Top Left: retained malt that was not pulverized

Top Right: Friabilimeter in action

Left: whole kernels and non-friable fragments ready to be weighed

24

Wet Methods

Wet and Chemical Analysis

- Milling of malt followed by:
 - Congress Mash
 - $\,\circ\,$ Cold water extraction
 - Use of chemical reagents, heat, and/or light to examine a chemical or physical property
- These analytical techniques provide more specificity compared to physical analysis
- Results reported as % Dry-basis and/or % As-is
 - % Dry-basis = results expressed as malt without moisture (all malt used for analysis contains moisture)
 - % As-is = results based on malt weight with moisture (how brewers use malt)

Sample Prep for Wet Analysis

- Congress Mash
 - $\,\circ\,$ Produces standardized (congress) wort
 - Coarse and fine grinds of malt mashed separately
 - Temperature ramping allows all mash-relevant malt enzymes to be active; not representative of most modern mash methods
 - Continuous stirring used during mashing
 - Fine grind maximizes extraction of malt carbohydrates, proteins, and color
 - $\,\circ\,$ Coarse grind approximates brewery grist
 - $\,\circ\,$ Wort is cooled to room temperature and filtered

Sample Prep for Wet Analysis

- Cold water extraction for enzymatic measurement
 - $\,\circ\,$ Fine grind using room temperature water
 - Does not activate enzymes or result in starch conversion
 - $\,\circ\,$ Preserves enzymes and allows for measurement
 - $\,\circ\,$ 2 hours with intermittent shaking
- Cold water extraction for DON
 - $\,\circ\,$ Very coarse grind
 - Less than 10 mins extraction using vigorous shaking and centrifugation for separation
 - Assessed using ELISA method (enzyme-linked immunosorbent-assay)

Extract

- Total wort dissolved solids after the congress mash
 - Includes sugars, dextrins, polysaccharides, proteins, enzymes, FAN, free ions, and more
 - Reported as % as-is and % dry-basis for fine grind and coarse grind
 - Used to calculate grist weight
- Influences
 - \circ Barley genetics and growing environment
 - Malt modification
 - $\,\circ\,$ Grain size
- Correlations

		JOL 190 / 110	(Therebu	italitar y				
		Certificate	e Of Anal	ysis				
Customer	Ship Date	Car Number		Grade			Destination	
EWERS SUPPLY GROUP 4/28/202				North Star	⁻ Pils		BSG SHAKOPEE WAREHOUSE	Ξ
ipment Wt. Lbs.							Rahr Ref M	٩c
159,368							0084591BS	G
	Crop Yea	r	Variety	Р	ercent			
		Approved	d Malting V	arieties	100			
Assay	Metho	dology		Shipment	Min	Spec	Max Spec	
Moisture, %	ASBC-	Malt-3		4.12			5.00	
Fine Grind, As Is, %				78.3				
Fine Grind, Dry Basis,	<mark>%, %</mark> ASBC-	Malt-4		81.7		79.0		
Fine/Course Differenc	<mark>e, %</mark> ASBC-	Malt-4		0.3			2.0	
Course Grind, As Is, %	<mark>/o</mark>			78.0				
Course Grind, Dry Bas	<mark>sis, %</mark> ASBC-	Malt-4		81.4				
Color, SRM	ASBC-	Wort-9		1.80		1.50	2.00	
Diastatic Power, ^o Lint	ner ASBC-	Malt-6C		131		110	180	
Alpha Amylase, DU, D	U ASBC-	Malt-7D		61.4		50.0	70.0	
Total Protein (Leco),	% ASBC-	Malt-8B		11.33			12.5	
Soluble Protein, %	ASBC-	Wort-17		4.78				
S/T Ratio				42.2		37.00	44.00	
Viscosity, cP	ASBC-	Wort-13B		1.49			1.55	
Beta Glucan, mg/L	ASBC-	Wort-18B		127			150	
Don, mg/L				0.10			0.50	
FAN, mg/L	ASBC-	Wort-12B		177		150	215	
pH	ASBC-	Wort-8		5.99				
7/64	ASBC-	Malt-2B		71.5				
6/64	ASBC-	Malt-2B		20.8				
5/64	ASBC-	Malt-2B		6.5				
Thru	ASBC-	Malt-2B		1.2			2.0	
Turbidity, NTU				10.3				
Friability	ASBC-	Malt-12		89.3				
Friability %WK	ASBC-	Malt-12		0.36				
bushel Weight, lb/bu	ASBC-	Malt-2A		41.2				
5/64 Thru Turbidity, NTU Friability Friability %WK bushel Weight, Ib/bu	ASBC- ASBC- ASBC- ASBC- ASBC-	Malt-2B Malt-2B Malt-12 Malt-12 Malt-2A		6.5 1.2 10.3 89.3 0.36 41.2				2.0

Theresa Kukaı

Extract: Fine-Coarse Difference

- Fine Grind
 - $\,\circ\,$ Laboratory maximum extract
- Coarse Grind
 - $\,\circ\,$ Comparable to brewery grist
- F/C Difference
 - Generally considered an outdated metric because modern malts have a low F/C Difference
 - \odot F/C Difference > ~1.5% considered undermodified
- One of the terms we need to know because some brewers still think F/C is relevant

25-minute mark!

Protein Related Components

Customer	Ship Date	Car Number	Grade		Destination
BREWERS SUPPLY GROUP	4/28/2023		North Star P	ils	BSG SHAKOPEE
					WAREHOUSE
Shipment Wt. Lbs.					Rahr Ref No
159,368					0084591BSG
	Crop Yea	r	Variety Per	cent	
		Approved	Malting Varieties 10	00	
Assay	Metho	dology	Shipment	Min Spec	Max Spec
Moisture, %	ASBC-	Malt-3	4.12		5.00
Fine Grind, As Is, %			78.3		
Fine Grind, Dry Basis, 9	%, % ASBC-	Malt-4	81.7	79.0	
Fine/Course Difference	, % ASBC-	Malt-4	0.3		2.0
Course Grind, As Is, %			78.0		
Course Grind, Dry Basi	s, % ASBC-	Malt-4	81.4		
Color, SRM	ASBC-	Wort-9	1.80	1.50	2.00
Diastatic Power, ^o Lintn	<mark>er A</mark> SBC-	Malt-6C	131	110	180
Alpha Amylase, DU, DU	J ASBC-	Malt-7D	61.4	50.0	70.0
Total Protein (Leco), %	ASBC-	Malt-8B	11.33		12.5
Soluble Protein, %	ASBC-	Wort-17	4.78		
S/T Ratio			42.2	37.00	44.00
Viscosity, cP	ASBC-	Wort-13B	1.49		1.55
Beta Glucan, mg/L	ASBC-	Wort-18B	127		150
Don, mg/L			0.10		0.50
FAN, mg/L	ASBC-	Wort-12B	177	150	215
pН	ASBC-	Wort-8	5.99		
7/64	ASBC-	Malt-2B	71.5		
6/64	ASBC-	Malt-2B	20.8		
5/64	ASBC-	Malt-2B	6.5		
Thru	ASBC-	Malt-2B	1.2		2.0
Turbidity, NTU			10.3		
Friability	ASBC-	Malt-12	89.3		
Friability %WK	ASBC-	Malt-12	0.36		
bushel Weight, lb/bu	ASBC-	Malt-2A	41.2		

Issued: 01 Jun, 2023

Total Protein

- Reported as % dry-basis
- Importance
 - Source for all protein related components: soluble protein,
 FAN, enzymes
 - Mashing, color and flavor formation, foam stability all trace back to protein
- Influences
 - 2-row, 6-row, variety, crop year, terroir
 - $\,\circ\,$ Grain size
- Correlations

RAHR

- \circ (+)diastatic power, alpha-amylase, FAN, soluble protein, S/T
- o (-) assortment, bushel weight, extract

Malt protein contributes important building blocks for all the brewing chemistry

Soluble Protein

- Percentage of malt protein that dissolves into congress wort
- Importance
 - $_{\odot}$ Color formation during the boil
 - $_{\odot}$ Yeast nutrition in fermentation
 - $\,\circ\,$ Foam structure in the final beer
 - $\,\circ\,$ Reacts with polyphenols to form beer hazes
- Influences
 - Barley protein
 - $\,\circ\,$ Degree of modification
- Correlations

S/T Ratio (aka Kolbach Index)

- Ratio of soluble protein total protein
- General indicator of overall modification
 - Higher S/T value allow for shorter mash and result in easier wort recovery, and higher brewhouse yield
- Influences
 - Barley: total protein, germinative vigor
 - $\,\circ\,$ Malting process: germination control metrics
- Correlations
 - \circ (+) friability, FAN, color,
 - (-) beta-glucan, viscosity, F/C difference

S/T is a balancing act

Free Amino Nitrogen (FAN)

- Measure of "free amino" groups at the end of a polypeptide chain. FAN increases as protein hydrolysis occurs in malting.
- Vital to yeast health
- Contributes to color and flavor formation
- FAN surviving fermentation can contribute to beer staling
- Influences
 - Barley protein
 - $\,\circ\,$ Modification
- Correlations

RAHR

• (+)soluble protein, color, friability

Diastatic Power

- Sum of all enzymes that degrade starches into sugars and dextrins
 Reported in DP units (°L or degrees Lintner, archaic)
- Necessary to convert starch into fermentable sugars
- Adjuncts and specialty malts dilute DP from base malt
- Influences
 - $\,\circ\,$ Barley variety, growing conditions, and total protein
 - $\,\circ\,$ Barley modification
 - \circ Kilning intensity
- Correlations
 - (+), somewhat: total protein, alpha-amylase, S/T, moisture
 - \circ (-), malt color

Starch granules pitted from enzyme action

Alpha-Amylase

- Breaks starch into dextrins and some fermentables
- Reported as dextrinizing units (DU)
- Major component of DP
- More stable at high temperatures than other malt enzymes
- Influences
 - Barley: variety, growing conditions, protein level
 - $\,\circ\,$ Degree of modification: synthesized during germination
- Correlations
 - \circ (+)DP, moisture, S/T
 - (-)color

Alpha-amylase

Gums; Non-Starch Polysaccharides

Customer	Ship Date	Car Number	Grad	e	Destination				
BREWERS SUPPLY GROUP	4/28/2023		North Sta	ar Pils	BSG SHAKOPEE				
					WAREHOUSE				
Shipment Wt. Lbs.					Rahr Ref No				
159,368					0084591BSG				
*	Crop Yea	r	Variety	Percent					
		Approved	d Malting Varieties	100					
Assay	Metho	odology	Shipmen	t Min Spec	Max Spec				
Moisture, %	ASBC-	-Malt-3	4.12		5.00				
Fine Grind, As Is, %			78.3						
Fine Grind, Dry Basis,	, %, % ASBC-	-Malt-4	81.7	79.0					
Fine/Course Difference	e, % ASBC-	-Malt-4	0.3		2.0				
Course Grind, As Is, 9	%		78.0						
Course Grind, Dry Ba	sis, % ASBC-	-Malt-4	81.4						
Color, SRM	ASBC-	-Wort-9	1.80	1.50	2.00				
Diastatic Power, ^o Lint	ner ASBC-	-Malt-6C	131	110	180				
Alpha Amylase, DU, D	OU ASBC-	-Malt-7D	61.4	50.0	70.0				
Total Protein (Leco), 9	% ASBC-	-Malt-8B	11.33		12.5				
Soluble Protein, %	ASBC-	-Wort-17	4.78						
S/T Ratio			42.2	37.00	44.00				
Viscosity, cP	ASBC-	-Wort-13B	1.49		1.55				
Beta Glucan, mg/L	ASBC-	-Wort-18B	127		150				
Don, mg/L			0.10		0.50				
FAN, mg/L	ASBC-	-Wort-12B	177	150	215				
pН	ASBC	-Wort-8	5.99						
7/64	ASBC-	-Malt-2B	71.5						
6/64	ASBC-	-Malt-2B	20.8						
5/64	ASBC-	-Malt-2B	6.5						
Thru	ASBC-	-Malt-2B	1.2		2.0				
Turbidity, NTU			10.3						
Friability	ASBC-	-Malt-12	89.3						
Friability %WK	ASBC-	-Malt-12	0.36						
bushel Weight, lb/bu	ASBC-	-Malt-2A	41.2						

Theresa Kukar

39

Issued: 01 Jun, 2023

Beta Glucans and Arabinoxylans

Beta glucan is a glucose polymer with β 1-3 and β 1-4 bonds.

Arabinoxylans contain xylose arabinose (both 5-carbon sugars) and sometimes contain ferulic acid.

Xylose

Arabinose

ΌΗ

Beta-Glucan

- Primary structural polysaccharide found in barley cell walls
 - $\,\circ\,$ Type of dietary fiber
 - $\,\circ\,$ Reported in ppm, dry-basis
 - $\,\circ\,$ Contributes to wort viscosity
 - $\,\circ\,$ Can affect lautering and brewhouse yield
 - $\,\circ\,$ Can contribute to beer haze
- Influences
 - $\,\circ\,$ Barley: genetics and terroir
 - Modification: direct connection to cytolysis
 - $\,\circ\,$ Molecular size: not all β -glucan the same
- Correlations
 - \circ (+) viscosity, turbidity

Microscopic image of barley endosperm stained with calcofluor. Calcofluor binds βglucan and fluouresces.

Viscosity

- Measure of congress wort's resistance to flow
- Reported as Centipoise (cP)
- Indicates ease or difficulty for wort separation (lauter/yield)
- Influences
 - $\,\circ\,$ Barley: genetics and terroir
 - $\,\circ\,$ Modification: cytolysis breaks down β -glucans and arabinoxylans
- Correlations
 - $_{\odot}$ (+) β -glucan, turbidity
 - \circ (-) friability, S/T, FAN

Turbidity

- A measure of light scattering in congress wort
- Reported in NTU (Nephelometric Turbidity Units)
- High levels may be associated with lautering issues or haze in beer
- Influenced by modification
- Weakly correlates with:
 - \circ (+): beta-glucan, viscosity, maybe color
 - \circ (-): soluble protein, S/T, FAN

Color

- Defined by the color of the congress wort
- Determined by measuring absorbance of 430 nm light in a spectrophotometer
- Expressed in SRM, EBC, IOB, or Lovibond units
- Used in recipe calculations to estimate beer color
- Influence by modification and kilning schedule
 - Modification increases FAN and reducing sugars (Maillard reactants)
 - Kilning schedule major driver of color development
- Correlations
 - (+): soluble protein, S/T, FAN
 - (+): flavor (bready, caramel, roasted, etc.)

C (-): diastatic power and alpha-amylase

Moisture

- Water content of malt
- Measured by completely drying finely ground sample and measuring change in weight
- Reported as % moisture by weight
 - High moisture: reduces malt stability (flavor, enzymes, pests)
 - $\,\circ\,$ Very dry: increases susceptibility to damage during handling
 - $\,\circ\,$ Used to calculate dry-basis malt values in brewing math
- Influenced by kilning and storage after kilning
- Correlations (sometimes)
 - \circ (+): diastatic power, alpha-amylase
 - \circ (-): color, friability, dusty malt (not a COA value)

рΗ

- Measurement of the acidity or basicity of the congress wort
- Malt pH usually in the pH 5-6 range
- COA pH is a predictor of mash pH
- Mash and wort pH influence enzyme activity, color and flavor development during wort boiling, and hop acid isomerization
- Influences
 - $\,\circ\,$ Barley genetics and terroir
 - Malt modification, lactic acid bacteria (anaerobic bed), kiln temperature
 - $\,\circ\,$ Steeping water chemistry
- Correlates with malt color, especially in specialty malts

DON (Deoxynivalenol)

- Produced by Fusarium Head Blight (fungal disease affecting cereals)
- Measured by ELISA assay and reported in mg/L or ppm
- Commonly called vomitoxin because causes vomiting
- Legally regulated to ensure food safety (1 ppm maximum)
- Associated with beer gushing in packaged beer and premature yeast flocculation (PYF) issues during fermentation
- Influences
 - $\,\circ\,$ DON measurement of barley
 - DON levels in cereal grains drop during storage
 - DON is water soluble; levels drop during after steeping

45-minute mark!

Summary

COA Summary

- Color
 - $\,\circ\,$ Used in brewing calculations
 - \circ Flavor expectations
- Extract
 - $_{\odot}$ Critical in brewing calculations
- Assortment & Friability
 - Influence mill setting
 - $\,\circ\,$ Relates to extract efficiency in brewing
- DP & AA
 - Dictates adjunct usage in recipes
 - o Short or long mash?

• FAN

- $\,\circ\,$ Must have enough for yeast nutrition
- $\,\circ\,$ Excess can lead to beer flavor instability

Soluble Protein

 $\,\circ\,$ Relates to wort color and flavor development

- Viscosity, Beta-glucan, F/C diff, S/T
 - $\,\circ\,$ All are indices of modification
 - $\,\circ\,$ Malt modification influences brewing process
- Crop Year and Varietal Composition
 - Genetics + terroir is especially important with crop year changes

Questions?

Review Questions

- 1. What is the difference between a malt specification and a COA?
- 2. Two lots of malt have identical COAs, but the malts behave very differently in the brewery. Based on what you understand about how malt is made, what is a possible explanation of this? Note that this question is not specifically covered in this section and answering requires recalling material from other sessions. Also note that there are several correct replies.
- 3. Why is the congress mash used for malt analysis?
- 4. List 3 indices of modification.
- 5. Why do some brewers prefer malt that is lightly modified?
- 6. You have a customer who is a bit lax when it comes to reviewing malt COAs. For such brewers, when is a good time to take special note of their malt COA?

Thank You!

Ashton Lewis

Manager of Training & Technical Support

alewis@bsgcraft.com

(417) 830-2337

