Project

Nitro Kegerator

So you’ve got a kegerator, and you’re loving life now that you don’t have to bottle every batch of homebrew anymore. You also are the envy of family and friends because you serve finely crafted beer on draft in the comfort of your own home. But something is still missing: the ability to serve stouts, porters and pub ales with that same full mouthfeel, thick head, and gorgeous cascading bubble effect that your favorite brewpub or tavern offers with their fancy draft setup. With very little time and about $200 (if you are frugal, that is), you can serve up “nitro” beers at home without having to do any permanent modifications to your kegerator.

How does it work?

So where does that creamy mouthfeel, thick head and shimmering/cascading visual effect in a nitro beer come from? It’s a combination of two critical elements: a specially designed faucet and a special mixture of gas.

The faucet, which is often called a “stout” or “Guinness” faucet, sports an elongated vertical design and at its core has a restrictor plate that both slows down the speed of the pour and also agitates the beer as it is poured (which helps to create that big head). The restrictor plate, or “sparkler” as it is sometimes called, functions very similar to the aerator disc in a kitchen or bathroom sink faucet. It can also be removed from the faucet for a standard pour in cases where the faucet must serve double duty as both a stout and standard tap.

The other half of the equation is the gas pushing the beer, which is referred to as “beer gas,” “Guinness gas,” or even “beverage gas,” depending on the supplier. Nitrogen and CO2 blends are sold in a few different ways and it’s critical that you get the right blend for the below procedures to work. The blend you’ll want will have 70–75% N2 and 25–30% CO2. Avoid the common high pressure draft system 60/40 blend, which is actually 60% CO2 and 40% Nitrogen. Nitrogen does not dissolve very well in beer, and much of it comes out of solution almost immediately after pouring. This is a big part of what causes the visual cascading effect (the other part being the agitation from the restrictor plate in the faucet). Additionally, nitrogen tends to form smaller bubbles than CO2, and this is why a nitro-poured stout or pub ale has a dense, persistent head.

Once the pour is complete and the undissolved nitrogen has escaped, what’s left is a beer that’s approximately one-third as carbonated as a typical draft beer. It’s similar to a cask ale but without the concerns of flavor degradation (oxidation) from pumping air into the keg. The lower carbonation also gives the beer a fuller mouthfeel as compared to beers served at higher carbonation levels.

Parts and Tools

  • Kegerator
  • Nitrogen/CO2 blend gas tank (10–75% N2/25-30% CO2)
  • Stout faucet
  • Cylinder connector (most N2 tanks are female, unlike CO2 tanks which have male connections)
  • Gas regulator that meets the safety standards of your N2 tank (will be printed on the tank. A regular CO2 regulator may not be safe.)